Given that I read 150 - 200 research papers a year, it seems only reasonable that I point out papers that I find particularly interesting. One of the first papers that I read in grad school (and still one of the most interesting) is the subject of this post, Producing wrong data without doing anything obviously wrong!
We know of many sources of variance in our measurements, like whether other applications or processing is occurring. Or second order items like, where is the data laid out on disk (inner versus outer tracks) or what are the specific pages of memory allocated (as it can influence caching)? But these variations are (usually) different from run to run, so by taking many measurements we can see an accurate performance where the events above occur with some frequency.
The paper tests the following comparison: what benefit does -O3 provide over -O2 in gcc? Beyond the variations above, what items may affect performance of which we aren't aware, particularly those that don't vary over runs. The danger is that these artifacts can result in this "wrong data" without our knowing it. Two artifacts are analyzed in the paper: linking order and environment size. Taking these in order.
The authors found that changing the order that the libraries are linked in the applications showed a performance variation of 15%. On further analysis, they found that certain performance critical sections of code would have different alignments depending on the linking order. Sometimes the code would be in one cache line, other times two. This bias persists in both gcc and ICC (Intel's compiler).
Environment size also has unpredictable effects on application performance. On the UNIX systems tested, environment variables are loaded onto the stack before the call into the application's main() function. As the variables increase in size, the alignment of the stack changes and this causes performance effects throughout the code. Some applications have minimal effects, others will vary by +/- 10%.
While these are but two cautionary tales of how small changes to program state can have significant performance impacts, the main take-away is that these effects will always be present. But they call us to action in preparing more diverse workloads that can address these biases, like conducting multiple runs address interrupts, context switches, etc.
A discussion of how to do Computer Science well, particularly writing code and architecting program solutions.
Wednesday, January 19, 2011
Wednesday, January 12, 2011
From C to C#
My recent work has lead me to port several programs that I'd previously developed in C into C#. In a previous post, I explained some of my preference for C, but work being work (or research).... After these efforts, I thought I'd expand upon some of my joys and sorrows experienced during this effort.
First, overall the process was surprisingly easy. Most code required little to no changes. Often, entire code bodies were copied between projects with a single find / replace: "." in place of "->".
Second, the minor changes were basically those within the object-based model. Fields of a struct become public (or private). And global functions need to be assigned to a class.
Third, some types and constructs do not have an easy conversion. While not difficult, it was nonetheless annoying to have to redo arrays as having run-time defined length. Or to change types to UInt32.
The final aspect to porting between languages is the run-time / OS / system interfaces that do change. So while the internals of the magical program box remain relatively constant. The externals of how it interacts with the system to take in / send out data change. Fortunately, for my porting tasks, this code was relatively modest. (One of the more difficult parts of this step is covered in Ray Tracing ... Part 2).
First, overall the process was surprisingly easy. Most code required little to no changes. Often, entire code bodies were copied between projects with a single find / replace: "." in place of "->".
Second, the minor changes were basically those within the object-based model. Fields of a struct become public (or private). And global functions need to be assigned to a class.
Third, some types and constructs do not have an easy conversion. While not difficult, it was nonetheless annoying to have to redo arrays as having run-time defined length. Or to change types to UInt32.
The final aspect to porting between languages is the run-time / OS / system interfaces that do change. So while the internals of the magical program box remain relatively constant. The externals of how it interacts with the system to take in / send out data change. Fortunately, for my porting tasks, this code was relatively modest. (One of the more difficult parts of this step is covered in Ray Tracing ... Part 2).
Subscribe to:
Posts (Atom)